
1.  Introduction
Intermittent streams are common throughout the world, and are characterized as having variable cycles of 
wetting and flow cessation (Busch et al., 2020). Though intermittency is a natural phenomenon, projected 
changes in temperature and precipitation patterns are expected to prolong the dry season and increase the 
frequency of multi-year droughts in many parts of the world (Dai, 2011). This, in turn, is predicted to in-
tensify the low-flow period and exacerbate the duration and severity of intermittent conditions (Grimm & 
Fisher, 1992; Larned et al., 2010). Changes to streamflow patterns can profoundly influence ecological func-
tioning of streams by disrupting evolutionary cues (Heim et al., 2016), altering nutrient cycles (von Schiller 
et al., 2011), and increasing the risk of invasion by nonnative species (Larson et al., 2009). Many endemic 
and imperiled species that are adapted to natural intermittency may be placed at risk of extirpation from 
these shifts (Jaeger et al., 2014). Furthermore, changes to hydrological regimes may reduce the ecosystem 
services provided by intermittent streams, such as drinking water resources (Marshall et al., 2018) and nu-
trient cycling (Datry, Foulquier, et al., 2018), which may exacerbate stressors faced by human populations 
(Datry, Boulton, et al., 2018). Understanding the drivers of intermittent stream dynamics, as well as their 
sensitivity to climate variability, is critical for predicting how functioning of these systems may change un-
der a volatile climate future.

Previous studies on temperate and arid intermittent stream dynamics have shown that as the dry season 
progresses, the wetted channel contracts from the full extent of the geomorphic channel network in re-
sponse to declining stream discharge (Godsey & Kirchner, 2014). The spatial and temporal patterns of in-
termittency are affected by meteorologic, geologic, and land cover conditions (Costigan et al., 2016), with 
topographic relief and lithology playing a particularly important role in influencing the spatial patterns of 
wetted channel contraction in intermittent stream networks (Jensen et al., 2017; Lovill et al., 2018; Prance-
vic & Kirchner, 2019). Growing insight into the mechanisms that control wetted channel dynamics has led 
to attempts to model and predict intermittent stream expansion and contraction (Pate et al., 2020; Ward 
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et al., 2018; Yu et al., 2019). These studies have explored both seasonal or subseasonal expansion and con-
traction of the channel network, showing that both climatic and geologic setting can predict the wetted 
portion of networks. These efforts have ranged in spatial scale, from small headwater catchment studies 
(Ward et al., 2018) to large regional analyses (Yu et al., 2019), but have rarely considered the interannual 
variability (IAV) in patterns of intermittency.

The extent of stream drying can vary greatly depending on antecedent precipitation conditions, which are 
expected to be more variable with climate change (Pendergrass et al., 2017). There is evidence that inter-
mittent streams are especially sensitive to climate fluctuations and, compared to perennial streams, are 
predicted to be the most at risk of hydrologic regime shifts (Dhungel et al., 2016). Yet, relatively little atten-
tion has been given to documenting and evaluating the factors that influence IAV in intermittent stream 
drying. The consideration of interannual hydrological variation in intermittent streams has largely been 
devoted to characterizing its effect on ecosystem processes such as nutrient cycling (Bernal et al., 2004), 
fish behavior (Hwan & Carlson, 2016), and food chain length (Sabo et al., 2010). The few studies that have 
captured the IAV in hydrologic condition (Allen et  al.,  2019; Datry et  al.,  2016; Hammond et  al.,  2021; 
Lapides et al., 2021; Lovill et al., 2018) highlight the dynamism of wetted extents, but none have included a 
spatially explicit understanding of how river networks may respond to climate variability and change. With 
increasing precipitation volatility and rising temperatures (Swain et al., 2018), there is an urgent need to 
characterize where and when intermittent streams will be buffered from, or vulnerable to, climate change.

The overall goal of this study is to characterize intermittent stream drying patterns and their stability in 
relation to climate variability and physical setting. We mapped dry season wetted channel extent between 
2012 and 2019 at 25 streams in the Russian River watershed in northern California, USA. We used these 
data to develop a statistical model for wetted channel condition at the end of the dry season to evaluate the 
influence of a suite of land cover, physiographic, and climate variables (hereafter, the end-of-season mod-
el). Using a similar approach, we developed a model to identify factors that influence interannual variation 
in end-of-season wetted conditions (hereafter, the IAV model). Finally, the end-of-season and IAV models 
were applied across the watershed to predict extent and stability of wetted channel condition throughout 
the entire network.

2.  Study Site
The Russian River watershed (3,850 km2; Figure 1) encompasses parts of both Mendocino and Sonoma 
counties in northern California, USA. The mainstem flows 175 km from north to south and drains into 
the Pacific Ocean (Opperman et al., 2005). The basin is mostly underlain by Franciscan Complex, a Juras-
sic-Cretaceous age terrane (Berkland et al., 1972). There are also large swaths covered by hillslope deposits 
or alluvium. Vegetation consists of a mixture of hardwood forests, conifer stands, oak woodlands, and chap-
arral. The region has a legacy of timber harvesting, which peaked in the 1950s and subsequently declined 
rapidly due a depletion of resources (Osward, 1972). Currently, the predominant land-use change stems 
from the conversion of many valleys and surrounding hillslopes in the basin to vineyards and residential 
development (Merenlender, 2000).

The region has a Mediterranean climate, with a highly seasonal precipitation regime. Much of the rain-
fall occurs from November to March, with the remainder of the year being fairly hot and dry (Gasith & 
Resh, 1999). Relatively few storms account for the total annual precipitation, which is highly variable year-
to-year, ranging from 690 to 2,160 mm (Opperman et al., 2005). Streamflow reflects this seasonal and IAV in 
rainfall (Sumargo et al., 2020), with discharge peaking in the winter wet season and then receding through 
the summer dry season, and varying between years relative to antecedent precipitation. Most of the tribu-
taries of the Russian River cease to flow in the dry season, contracting into reaches that contain a series of 
disconnected pools or are completely dry (Deitch et al., 2009). While recession in many watersheds begins 
in the low-order headwaters (Biswal & Marani, 2010), drying in the tributaries of this system tends to be-
gin in the lower alluvial reaches and proceeds upstream, with headwater reaches often remaining wetted 
through inputs from groundwater and springs (Grantham, 2013), as has been reported in other arid land-
scapes (Stanley et al., 1997). Despite the harsh environmental conditions of these intermittent streams, rem-
nant pools within these tributaries are important habitats for native aquatic species, including endangered 
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Coho salmon (Oncorhynchus kisutch), and threatened Steelhead trout (Oncorhynchus mykiss; Grantham 
et al., 2012; Obedzinski et al., 2018; Vorste et al., 2020).

3.  Methods
3.1.  Wetted Channel Mapping

Surveys of wetted channel conditions were conducted between 2012 and 2019 in 25 stream reaches (Table 
S1 of Supporting Information S1), ranging in length 0.46–22.04 km, for an average total surveyed length of 
84.89 km each year. Most streams were surveyed at the end of the dry season (September–October), when 
the extent of stream drying is greatest, while a few focal streams (Figure 2b) were surveyed biweekly to 
capture the change in condition during the summer dry-down period (May–October). For many streams, 
surveys were completed in one day, but surveys for longer streams were surveyed on consecutive days. Study 
streams were selected for their potential to support endangered salmon, and represent the broad range of 
land cover, physiographic, and climate conditions found in the Russian River watershed. For some streams, 
the extent of the channel that was surveyed depended on landowner access, which was subject to change 
yearly. The timespan within which surveys were conducted encompassed extreme low and high precipita-
tion years (Figure 1).

To document wetted channel condition, field crews walked the length of the geomorphic channel of each 
stream, using a Bad Elf GPS (±1 m accuracy) connected to ArcCollector on a digital tablet to map the pres-
ence of surface water. A “wet” classification was defined as visible surface water presence. Following data 
collection, the survey data was aggregated and delineated into 100 m long reaches. The proportion of the 
reach length that was classified as dry along the 100 m reach was calculated for each year. IAV was calculat-
ed as the coefficient of variation of the end-of-season wetted reach proportion across years. Not all streams 
or reaches were surveyed each year and only streams with at least 3 yr of mapping were included in this 
analysis (Table S1 in Supporting Information S1).

Figure 1.  Map of the Russian River watershed in northern California, USA. Right inset shows the spatial distribution of the streams included in the study. 
Bottom inset shows the water year precipitation (gray) and monthly (black) precipitation.
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Figure 2.  Variability of end-of-season condition within the watershed. (a) It shows overall variability in end-of-season condition for each stream surveyed, 
calculated by taking the coefficient of variation. (b) It shows the change in condition over the summer dry-down period (May–October) for two representative 
streams, Dutch Bill Creek and Mill Creek in 2018. (c) It shows the end-of-season condition in September from 2012 to 2019 for the same streams. For both (b 
and c), the vertical axis is river kilometer in upstream order, with 0 denoting the most downstream point. Gray denotes regions that were not surveyed due to 
inaccessibility.
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3.2.  Model Development

The wetted channel observations were combined with a suite of geospatial variables to train models for end-
of-season condition and IAV. Predictor variables were compiled for each 100 m reach of all study streams 
using land cover, physiographic, and climate characteristics that have been previously reported to influence 
stream expansion and contraction (Costigan et al., 2016; Prancevic & Kirchner, 2019). Climatic variables 
were obtained for each reach from the PRISM data set (Daly et al., 2008) and included mean annual tem-
perature, total annual precipitation, and total seasonal precipitation, which was calculated from monthly 
averages for winter (December, January, and February), spring (March, April, and May), summer (June, 
July, and August), and fall (September, October, and November). We also calculated precipitation totals 
from the antecedent year, antecedent 3 years, and antecedent 5 years to explore legacy effects of precipita-
tion. Physiographic variables included upstream area, slope, elevation, planform curvature, and surficial 
properties. The drainage density scaling exponent (Prancevic & Kirchner, 2019), quantifying how drainage 
area increases nonlinearly with downstream distance, was calculated for each subwatershed. The dominant 
geologic unit class, obtained from the State Geologic Map Compilation (Horton, 2017), and soil properties, 
such as texture and runoff potential, obtained from the Gridded Soil Survey Geographic Database (Soil 
Survey Staff, 2016), were calculated at the local (from a 10 m buffer along each 100 m reach) and watershed 
scale (contributing area to each reach). Finally, percent land use/land cover obtained from the National 
Land Cover Database (Homer et al., 2012) and canopy density from the Sonoma County Vegetation Map-
ping and LiDAR Program (Dubayah & Hurtt, 2014) were calculated at the local- and watershed-scale. An 
extended description of the variables included can be found in the Table S2 in Supporting Information S1. 
We calculated a correlation matrix and removed variables that were highly correlated (Pearson correlation 
coefficient ≥0.80; Figure S1 in Supporting Information S1). The variables that were highly correlated were 
annual precipitation with winter, spring, and fall precipitation; spring precipitation with fall precipitation; 
antecedent 3 years' precipitation with antecedent 5 years' precipitation; medial soil with agriculture; and 
loam soil with high soil runoff potential and skeletal soil. For each group of highly correlated variables, 
we identified and removed the one that was more correlated with other variables. This process removed 
the annual precipitation, spring precipitation, antecedent 3 years' precipitation, medial soil, and loam soil 
variables from model development.

The predictor variables were combined with the wetted channel survey observations in two statistical mod-
els using the random forest method (Cutler et al., 2007; Prasad et al., 2006): one to predict the end-of-season 
condition and one to predict the IAV. For the end-of-season (EOS) model, the wetted channel was quantified 
as the proportion of each reach that was dry, ranging from 0% to 100%. For the IAV model, the coefficient 
of variation of the end-of-season condition across the years surveyed (2012–2019) was calculated for each 
reach.

3.3.  Model Evaluation and Application

The random forest models were implemented using the caret 6.0-86 package in R 3.4.2 (Kuhn, 2011). Ran-
dom forests are a robust decision tree model, where predictions from hundreds of individual decision trees 
are aggregated to compute a mean predicted value. Partitioning the dataset into independent decision trees 
reduces variance and limits the risk of overfitting (Liaw & Wiener, 2002). A leave-one-out cross-validation 
method was used to assess model performance, in which models were iteratively trained with subsets of 
the data that randomly excluded five streams. The omitted sites were then returned to the training class for 
the next iteration, with a different subset of streams being reserved as the validation class. In each iteration, 
model predictions were made for the streams that were excluded from the dataset and performance was 
assessed by comparing observed and predicted values using R2 and mean square error (MSE). A range of 
tuning parameters were tested to find optimal values for the model (Table S3 in Supporting Information S1). 
We found a marginal increase in model performance with an increase in number of trees or tree depth, with 
100 trees and tuning length of 5 resulting in a model with both high performance and lower processing 
time. Variable selection was done by using a recursive feature elimination method (Gregorutti et al., 2017) 
to identify a subset of variables to train a model with comparable accuracy as when all variables are includ-
ed. The importance of each predictor variable was determined using increase in MSE in predictions when 
a variable is permuted and node purity, which is a measure of the variance of the predictions when a given 
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variable is a node of a decision tree. For example, if reach observations are consistently wet when “clay soil” 
is a node, then the “clay soil” variable would have a high purity value. If observations have a large variance 
in their predicted outcome when “clay soil” is a node, then the variable would have a lower purity value. 
Individual conditional expectation (ICE) plots, which isolate the effect of a variable on the predicted out-
come, were used to determine the direction of each variable’s influence on wetted condition or variability.

The trained models were then used to predict EOS wetted conditions and IAV in all streams in the lower 
Russian River watershed (Figure 1). The upper section of the Russian River watershed was not included due 
to lack of LiDAR data used for topography and canopy variables. We calculated the same predictor variables 
used in the model for all 100 m stream reaches in the NHD data set. Meteorologic variables were calculated 
from a 10-yr climate record from 2009 to 2019 (PRISM). Since model predictions cannot be reliably made 
outside of the domain of the training data set, we removed the stream reaches for which the predictor vari-
able value fell outside the maximum and minimum bounds of the training data domain. This excluded 1.5% 
of the stream network, located in the lower Russian River watershed. We determined stability of intermit-
tent stream drying patterns by relating the EOS wetted channel predictions with the IAV model predictions 
for each reach. “Reliably dry” reaches were defined as those with a low proportion of wetted extent (<20% 
of the reach) and low IAV (CV < 20%), while “reliably wet” reaches were defined as those with a high pro-
portion of wetted extent (>80% of the reach) and low IAV (CV < 20%).

4.  Results
4.1.  Wetted Channel Mapping Patterns

While nearly all streams in the watershed are intermittent, the extent and interannual variation of end-of-
season wetted habitat varies among streams, with some streams exhibiting consistent end-of-season condi-
tions, regardless of antecedent precipitation, while others differ greatly across years (Figure 2a). Two rep-
resentative streams, Dutch Bill Creek and Mill Creek (Figure 1), show similar temporal patterns of wetted 
channel contraction over the summer months of 2018 (Figure 2b), with the lower reaches of both creeks 
becoming dry around August, but to a greater spatial extent in Dutch Bill. The creeks also exhibit distinct 
interannual variation in end-of-season wetted conditions (Figure 2c), with Dutch Bill Creek showing con-
sistent drying patterns in the lower reaches between 2012 and 2019, while Mill Creek varies more in the 
lower reaches across years. Given that both watersheds share the same climate regime, this suggests that 
differences in hillslope routing and subsurface properties may cause this difference in wetted channel con-
ditions between years. This pattern is consistent across the Russian River watershed; where each stream 
varies such that there is no unifying signal of channel contraction.

4.2.  End-of-Season Predictive Model

The EOS model accurately predicted the spatial extent of wetted channel conditions, with the best perform-
ing model having an R2 of 76.7% (Figure 3a). A recursive feature elimination analysis determined 15 varia-
bles (Figure 3b) that improved model accuracy, with an R2 of 82.2%. When comparing the predicted wetted 
channel extent to the observed channel extent in streams excluded from model training, we found that 77% 
of the predictions were within 20% of the observed condition. The EOS model was trained using data from a 
range of water years, including extreme wet and extreme dry years, which allowed us to understand how the 
watershed responds to anomalous conditions. In the wettest year surveyed (2019), 65% of the study reaches 
were predicted to be wet (>80% of the reach wetted at the end of the season), while 13% of the reaches were 
predicted to be dry (<20% of the reach wetted at the end of the season) at the end of the season. In contrast, 
in the driest year surveyed (2013), 51% of the study reaches were predicted to be wet compared to 18% of 
the reaches predicted to being dry. On average, 58% of the reaches were predicted to be wet, while 18% were 
predicted to be dry at the end of the season.

Climate variables were the most influential in the EOS models, as determined by rankings in both MSE and 
node purity (Figure S2 in Supporting Information S1). Long-term precipitation (LTP), including antecedent 
year and 5-yr totals, as well as seasonal precipitation metrics, were among the top important variables. All 
precipitation metrics had a positive influence on reach wettedness, while mean annual temperature had a 
negative influence (Figure 3c). Physical variables were also influential, particularly the soil runoff potential, 
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as well as different land cover metrics. Partial dependence plots (Figure S3 and S4 in Supporting Informa-
tion S1) illustrate the influence of physical surface and near-subsurface variables relative to LTP. They show 
that reaches were more likely to be wet when the LTP was higher, but that physical properties mediate the 
influence of LTP. For example, the positive effect of LTP on wetted conditions is dampened in watersheds 
predominantly underlain by metamorphic rock (Figure S3 in Supporting Information S1), but is amplified 
in those underlain by sedimentary rock (Figure S4 in Supporting Information S1).

4.3.  IAV Model

The IAV model was trained on the observed interannual variance of each reach’s EOS condition, along with 
the variables outlined in Table S2 in Supporting Information S1. Unlike the EOS model, the IAV model did 
not include time-varying climatic data, and instead included long-term variables of precipitation and tem-
perature variance to characterize each stream reach. The best performing IAV model had an R2 of 68.3% and 
highlighted differences within and among the study streams. For example, Dutch Bill Creek and Mill Creek 
(Figure 4a) have a very different wetted channel pattern, but the IAV model is able to capture the degree and 
distribution of IAV for both. For regions that show low IAV, the IAV model is able to predict both reliably 
wet and reliably dry sections.

Important predictor variables (Figure S5 in Supporting Information S1) were determined using both per-
cent increase in MSE and node purity. A recursive feature elimination analysis (Figure 4b) determined 15 
variables that were sufficient in maintaining model accuracy, with an R2 of 63.9%. These variables primarily 
relate to the physical surface or near-subsurface conditions, including geologic classes, soil permeability, 
and some land cover metrics. Geologic classes, including Franciscan Melange and sedimentary substrate, 
as well as low soil runoff potential, upstream, area, and elevation had a negative influence on end-of-season 
condition variability. In contrast, fine soil, clay soil, high soil runoff potential, and metamorphic substrate 
had a positive influence on variability.

Figure 3.  Performance of the end-of-season (EOS) predictive model. (a) Comparison of observed and predicted wetted channel for Dutch Bill Creek and Mill 
Creek, displaying EOS condition averaged across years along the stream length. The vertical axis is river kilometer, with 0 denoting the most downstream 
point. (b) The 15 variables selected from the recursive feature elimination with the sign of each variable’s influence on channel wettedness, determined using 
individual conditional expectation plots.
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4.4.  Stability of Intermittent Stream Drying Patterns to Climate 
Variability

Applying our models to the whole watershed provides insights into the 
sensitivity of the wetted stream network to climate variability. For the 
driest year included in this analysis (2013), 9.8% of the entire stream net-
work in the study area was predicted to be dry (<20% of reach wetted) 
and 46.7% of the stream network wet (>80% of reach wetted) at the end 
of the season. In contrast, for the wettest year (2017), 6.5% of the stream 
network was dry, compared to 71.1% of the stream network being wet.

Application of the results from the EOS model and the IAV models to 
predict stability of streams within the lower and middle Russian River 
watershed indicate that 3.7% of the watershed can be classified as reliably 
dry, while 16.1% of the watershed is classified as reliably wet at the end 
of the dry season (Figure 5). The remaining reaches in the watershed are 
more variable in their EOS condition, either due to high variance in sur-
face water presence, or because the response is neither strongly wet nor 
dry. In terms of the spatial distribution of reliably wet and reliably dry 
regions, 51% of the reliably dry reaches are located in the lower sections 
of tributary streams, within a distance of 3 km from the Russian River, 
compared to only 10% of the reliably wet reaches.

5.  Discussion
We developed two models to characterize intermittent stream drying 
patterns in relation to climate variability, using dry season wetted extent 
surveys for 25 streams in the Russian River watershed, across a range of 
water years. Our results show that end-of-season condition of streams 
vary both spatially and temporally, depending on physical setting and 
antecedent climatic conditions, with precipitation in prior seasons and 
years having a particularly influential effect. The models we developed 
to predict the end-of-season condition and the IAV both had strong pre-
dictive accuracy, with an R2 of 76.7% and 68.3%, respectively. The trained 
models were applied across all streams in the lower Russian River water-
shed to characterize the stability of intermittent stream drying patterns to 
interannual climate variability. Accordingly, we were able to characterize 
streams based on their sensitivity to climate and identify stream reach-
es predicted to be reliably dry, those responsive to antecedent precipita-
tion, and those predicted to be reliably wet and thus buffered to climate 
variability.

5.1.  Controls on End-of-Season Channel Dynamics

Results from the EOS model suggest that climatic variables have a dom-
inant influence on wetted channel conditions. In addition to wet sea-
son precipitation, cumulative precipitation from the previous year and 
previous 5 yr all had a significant influence on EOS wetted conditions. 
This points to the importance of hydrologic memory, and the legacy 
effects of antecedent precipitation in controlling wetted channel con-
ditions. Hydrologic memory has been described as the phenomenon of 
the landscape retaining the effects of a hydroclimatic event long after the 
atmosphere does (Jacobs et al., 2020). In areas with highly variable pre-

cipitation, such as Mediterranean climates, watersheds exhibiting hydrologic memory can buffer stream 
hydrologic responses to climate variability. For example, an unusually dry year may not exhibit the same 

Figure 4.  Performance of the interannual variability (IAV) model. (a) 
Comparison of observed wetted channel for Dutch Bill Creek and Mill 
Creek between 2012 and 2019 with the observed and predicted IAV, as well 
as streamflow stability, along the stream length. Streamflow stability is 
characterized through “reliably dry” reaches, which are defined as those 
with a low proportion of wetted extent (<20% of the reach) and low IAV 
(CV < 20%), while “reliably wet” reaches are defined as those with a high 
proportion of wetted extent (>80% of the reach) and low IAV (CV < 20%). 
The vertical axis is river kilometer, with 0 denoting the most downstream 
point. (b) The 15 variables selected from the recursive feature elimination 
with the sign of each variable’s influence on variability, determined using 
individual conditional expectation plots.
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degree of stream drying if there was high precipitation in previous years. This has been expressed in the lit-
erature; looking at this potential influence of past precipitation, Nippgen et al. (2016) used 21 years of daily 
streamflow and precipitation data from five watersheds in North Carolina to show that the previous year’s 
precipitation was as important as that year’s precipitation for streamflow. We found that surface water pres-
ence is affected by precipitation record at even longer time scales, which could buffer the stream network 
from interannual precipitation variability.

The expression of hydrologic memory is spatially heterogeneous, and depends largely on the physical vari-
ables that affect subsurface, or near-surface, storage. Results from partial dependence plots show that phys-
ical variables like geology can either amplify or diminish antecedent precipitation effects. Areas underlain 
with sedimentary rock augment the influence of previous years’ precipitation on end-of-season wetness, 
while areas underlain with metamorphic rock dampen the influence of previous years’ precipitation. The 
importance of the underlying physical structure in water storage and streamflow response has been con-
sidered by others (Hahm, Rempe, et al., 2019; Katsuyama et al., 2005; Tague & Grant, 2004), who have 
shown that storage capacity is largely dependent on properties like bedrock geology, soil depth, or degree 
of weathering. Recent work has shown that “rock moisture,” water held within weathered bedrock, can 
hold significant proportions of annual rainfall, thus regulates the timing of streamflow (Rempe & Diet-
rich, 2018) and extent of the wetted channel (Lovill et al., 2018). Indeed, regions underlain by more perme-
able bedrock have been shown to have higher storage and baseflow (Pfister et al., 2017), as well as higher 
transit times and different flow paths (Tetzlaff et al., 2009). Recent modeling work on intermittent stream 

Figure 5.  Stability of tributaries in the Lower and Middle Russian River watershed. “Reliably dry” reaches are defined 
as those with a low proportion of wetted extent (<20% of the reach) and low interannual variability (IAV; CV < 20%), 
while “reliably wet” reaches are defined as those with a high proportion of wetted extent (>80% of the reach) and low 
IAV (CV < 20%).
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hydrology has also shown that soil type is a major control on the spatial distribution of flow generation, and 
that unsaturated storage dynamics largely mediated the thresholds and pathways of flow (Gutiérrez-Jurado 
et al., 2019). Furthermore, the mechanisms that underpin the timing and extent of streamflow are in part 
due to the depth and permeability of the underlying soil, leading to spatiotemporally varying surface water 
presence during the dry season (Gutierrez-Jurado et al., 2021). This interplay between long term climate 
patterns and the highly localized influence of the underlying physical structure results in a heterogeneous 
wetted channel response, as is shown by our findings.

The importance of the critical zone moisture storage on subsurface moisture storage and surface water 
presence cannot be discounted, and the growing body of work on the subject (Brooks et  al.,  2015) has 
shown how these physical characteristics can decouple environmental responses from precipitation varia-
bility (Hahm, Dralle, et al., 2019). This understanding translates to wetted channel dynamics, with regions 
underlain by deeply weathered bedrock shown to sustain surface water flow much longer than nearby 
regions with a shallow critical zone (Lovill et al., 2018). Similarly, results from this study show that longer 
term precipitation can buffer regions from anomalous climatic conditions depending on the subsurface 
storage characteristics.

5.2.  Variability and Stability of Streams in a Non-Stationary Climate

While it is important to understand factors that control the extent of the wetted channel in a given year, 
the factors that predict the IAV of stream responses provide valuable insight as well. Current climate mod-
els predict a shifting climate regime, with already variable regions expected to become even more volatile 
(Horne et al., 2019). For example, in California, which experiences a Mediterranean climate with strong 
IAV, future climate is projected to have an exacerbated seasonal cycle, with rapidly alternating drought 
and flood periods (Swain et al., 2018). This increase in anomalous and extreme events will likely intensify 
intermittent stream conditions, and may shift systems from perennial to intermittent (Datry et al., 2014; 
Döll & Schmied, 2012; Larned et al., 2010). Given that a river’s flow regime acts as a first order control on 
its ecological and biogeochemical processes (Power et al., 1995), changes to a system’s flow regime can alter 
its integrity and capacity to support specific biotic communities (Cid et al., 2020; Grimm et al., 2013). Un-
derstanding how the river network responds to precipitation variability can provide insight into its stability 
under a non-stationary climate and help predict changes in streamflow patterns.

The variability model developed in this paper can be used to characterize the river network and allows us to 
understand its long-term functioning. Streams within the Russian River watershed all fall within the same 
Northern Coast Ranges hydrogeologic province, but we see a large variation in stream drying dynamics 
across space and time. Our results show that in an extreme wet year, the predicted proportion of wet reaches 
is nearly double that in an extreme dry year, while the predicted proportion of dry reaches is half. By ap-
plying the end-of-season and IAV models to the whole watershed, we can identify where these wet and dry 
reaches persist regardless of antecedent conditions. For example, regions of high variability, which respond 
proportionally to antecedent conditions, are vulnerable to a volatile climate and are at risk of increasing in 
severity of intermittent condition and habitat fragmentation. These changes can have profound effects on 
ecosystem functioning and species survival, where suitable habitats may become ecological traps in highly 
responsive systems (Vorste et al., 2020). Though many species are adapted to intermittent conditions, in-
creased severity of drying has been found to influence the persistence (Jaeger et al., 2014) and genetic com-
position of populations (Golden et al., 2021). In all likelihood, projected climate change will alter conditions 
faster than some species can respond (Lytle & Poff, 2004; Morrongiello et al., 2011). In contrast, regions of 
low variability, which are stable in their EOS condition regardless of the antecedent conditions, are buffered 
from anomalous climate events. From an ecological perspective, we can use this understanding to identify 
wet reaches with low variability as candidates for climate refuges, with reliable habitat year-to-year.

5.3.  Implications for Management

Understanding where viable habitat exists within a stream network is a key management challenge, but 
existing strategies are often based on static conditions. Tonkin et al. (2019) recently called for novel strat-
egies to adaptively manage river ecosystems, with a focus on models that incorporate increasing climatic 
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variability. We address this directly by developing models that build in the nonstationarity of climate pro-
jections. The tools developed from these models can be applied to identify reaches of relative stability and 
concern, as well as determine areas that are vulnerable to increased intermittency. The ability to predict 
where the wetted channel will persist through the dry season is critically important for sustaining aquatic 
biodiversity in arid and semi-arid regions, and can be used to target conservation and restoration decisions. 
Conversely, regions that are vulnerable to increased intermittency can be targeted for further monitoring 
and habitat recovery strategies. That said, a distinction must be made that the models and results presented 
here are with respect to the end-of-season condition. Regions identified as “reliably dry” may not provide 
suitable habitat for aquatic organisms at the end of the summer, but may be important habitat during earlier 
phases of species’ life cycle, such as spawning or rearing (Erman & Hawthorne, 1976; Hooley-Underwood 
et al., 2019; Meyer et al., 2007).

5.4.  Limitations and Further Research

The results from this study show that empirical observations of wetted channel conditions coupled with 
readily available climatic and physical features of the stream network can provide valuable insights into the 
temporal and spatial dynamics of intermittent stream drying. However, limitations in the availability, reso-
lution, and accuracy of geospatial variables constrained our ability to represent all the physical factors likely 
to influence wetted conditions. For example, geological variables were only available as coarse resolution 
classes, which only represented surficial components and not the subsurface structure. Previous studies 
have shown that subsurface geology (Day, 1980), depth to bedrock (Svec et al., 2005), and thickness of al-
luvium (Lovill et al., 2018) all affect the distribution of wetted channels but could not be incorporated into 
our analysis. Another limitation of our approach is the difficulty in distinguishing controls on stream drying 
from anthropogenic influences. Many of the reaches surveyed to calibrate the models presented here reflect 
a legacy of land use change in the watershed, which includes a history of intensive logging, agriculture, 
and water withdrawals. While we included some variables in the models to account for land use change, 
there were no data available to represent water-use pressures and alteration in stream channel morphology, 
which could significantly influence stream drying patterns. Nevertheless, the omission of these factors did 
not appear to substantially affect the models, given their high overall predictive performance.

Given that our models were calibrated to a single watershed in a coastal Mediterranean climate system, the 
utility of the approach in modeling wetted conditions in other intermittent stream contexts requires further 
exploration. Because performing field-based wetted channel surveys over multiple years require significant 
time and resources, wetted condition information obtained from remotely sensed observations may offer an 
alternative, cost-effective, means of building a model training data set. Future studies using remote sensors 
should be able to replicate the wetted channel condition data used in this study, at least in stream systems 
with limited canopy cover and high visibility of the stream channel. This analytical framework could also be 
adapted for predicting other relevant hydrological metrics, including timing of disconnection or rewetting, 
which would advance our understanding of how intermittent stream ecosystems may respond to climate 
change.

Furthermore, research is needed to expand on these findings and clarify the mechanistic connections be-
tween climate and physical variables. We found that precipitation at multiple timescales was important in 
predicting channel wetness, but it is unclear how these different precipitation metrics then translate to sur-
face water presence. Of the few studies that have considered the response of precipitation at multiple times-
cales, Spencer et al. (2019) found that the discharge response to multi-year precipitation was controlled by 
bedrock storage, which regulated the baseflow, whereas event-scale rainfall response was controlled by soil 
and glacial till storage. However, this work was characterizing perennial streams, and more work is needed 
for intermittent streams in regions with seasonal precipitation. Future research focusing on the mecha-
nisms by which both multi-year and event-scale precipitation translate to wetted channel dynamics and 
how the underlying physical properties that facilitate both short- and long-term water storage would greatly 
shape our understanding of these dynamic systems.
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6.  Conclusion
Understanding the spatial and temporal distribution of stream intermittency and variability is of funda-
mental importance for hydrology and freshwater ecology, with implications for sustaining imperiled and 
endemic species. By combining field observations of wetted channel extent with land cover, physiographic, 
and climate variables, we developed two models to predict both the extent and variability of the wetted 
network. We expanded this model to the entire watershed to further understand network dynamics and 
explore the stability of end-of-season conditions to climate variability. Climatic variables largely controlled 
the extent of the wetted network at the end of the season, with an emphasis on LTP, pointing to the im-
portance of hydrologic memory. The degree to which hydrologic memory contributed to the condition of 
a reach was dependent on the underlying physical structure. Regions underlain by sedimentary rock tend 
to amplify hydrologic memory, while regions underlain by metamorphic rock tend to diminish hydrologic 
memory. These surficial characteristics also strongly influenced the variability of the wetted network. Given 
that climate predictions are calling for increased precipitation volatility, understanding the spatiotemporal 
drying dynamics of intermittent streams can inform climate risk assessments and strategies for protecting 
biodiversity and the ecosystem services that intermittent streams support.

Data Availability Statement
Sampling data are available at http://www.hydroshare.org/resource/b7973d7df99b4f719098d959078ef4c3.
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